Approximating Global Quadratic Optimization with Convex Quadratic Constraints
نویسنده
چکیده
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the best of our knowledge.
منابع مشابه
A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملGlobal Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints
For the problem of maximizing a convex quadratic function under convex quadratic constraints, we derive conditions characterizing a globally optimal solution. The method consists in exploiting the global optimality conditions, expressed in terms of ε-subdifferentials of convex functions and ε-normal directions, to convex sets. By specializing the problem of maximizing a convex function over a c...
متن کاملGlobal Optimality Conditions for Quadratic Optimization Problems with Binary Constraints
We consider nonconvex quadratic optimization problems with binary constraints. Our main result identifies a class of quadratic problems for which a given feasible point is global optimal. We also establish a necessary global optimality condition. These conditions are expressed in a simple way in terms of the problem’s data. We also study the relations between optimal solutions of the nonconvex ...
متن کاملGlobal optimization in protein docking using clustering, underestimation and semidefinite programming
The underestimation of data points by a convex quadratic function is a useful tool for approximating the location of the global minima of potential energy functions that arise in protein-ligand docking problems. Determining the parameters that define the underestimator can be formulated as a convex quadratically constrained quadratic program and solved efficiently using algorithms for semidefin...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 15 شماره
صفحات -
تاریخ انتشار 1999